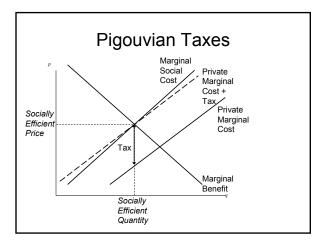
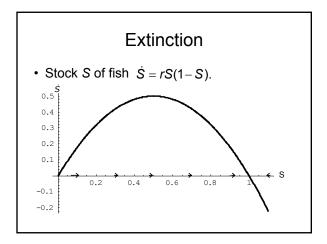


External Effects


- Effects on others not part of a transaction
 - pollution
 - + education
 - + gardens
 - noise



Quotas

- Fix quantity at the efficient level
- Tradable permits yields efficient use
- Used in SO_2 , other pollution
 - Permits bought by environmentalists occasionally

Add Fishing

- Cost b to operate a fishing boat
- Catches proportion a of fish (Q=naS)
- Constant elasticity of demand $\boldsymbol{\epsilon}$
- Competitive (zero profits) fishers, *n* boats

 $b = \left(\frac{Q}{n}\right)p(Q)$

$$\mathbf{Q} = \left(\frac{\mathbf{aS}}{\mathbf{b}}\right)^{\mathcal{E}} \quad \mathbf{n} = \frac{\mathbf{a}^{\mathcal{E}-1}}{\mathbf{b}^{\mathcal{E}}} \mathbf{S}^{\mathcal{E}-1}$$

Population Dynamics

$$\dot{S} = rS(1-S) - \left(\frac{aS}{b}\right)^{\varepsilon}$$

- If demand elastic, $S \approx 0 \Rightarrow \dot{S} \approx rS > 0$
- No extinction
- If demand inelastic, extinction possible
- Necessary if boats sufficiently cheap

Extinction

- With inelastic demand, fishing effort rises as stock of fish fall
- If rises fast enough, will drive fish to extinction
- Problem is externality
 - Fishers share common resource pool
 - Market doesn't account for the effect of their catch on the future profitability of fishing

Public Goods

Public Goods

- Two Key features:
- Non-excludability
- Non-rivalry
- Examples
 - Fireworks
 - National defense
 - ~ Rural highways
 - ~ Parks

Free-Riders

- Park size S (measured in \$)
- Individual value v_i(S)
- Individual contributions stop if $v'_i(S) \leq 1$
- With voluntary contributions, park is sized so that max v'_i(S) = 1
- · Efficient size satisfies

$$\sum_{i} v'_i(S) = 1$$

Taxes

- Solve inefficient size by setting park size and charging people 1/*n* of the cost
- Individuals get $v_i(S) \frac{S}{n}$
- Under voting, median dominates
- Park is sized at Median $v'_i(S) = \frac{1}{n}$
- · Closer to optimal

Local Public Goods

- Local public good is "locally nonexcludable"
- Localities differentiate, and public moves to optimal neighborhood
- Makes public goods provision much more efficient
- Especially relevant for schools