Perfect Competition

Major Points

- Focus on firm behavior
- Choices when prices are exogenous
- profit maximization constrained by technology
 - calculate input demands
 - comparative statics
 - conclusions about individual firm behavior
- Aggregate to market
 - market dynamics

Types of Firms

- · Proprietorship, e.g. family business
- Partnership, e.g. law, accounting practice
- Corporation
 - limited liability by shareholders
 - legal "person"
 - managed by agents of shareholders
- Non-profit corporation
 - only certain activities achieve tax free status

Organizational Form

- · Proprietorship: decisions made by owner
- · Partnership: voting and negotiation
- · Corporation: delegation
 - shareholders elect board
 - board chooses management
 - management makes most decisions
 - some large decisions require board vote
 - "separation of ownership and control"

Production Functions

- Focus on a single output
- Cobb-Douglas $f(x_1, x_2, ..., x_n) = a_0 x_1^{a_1} x_2^{a_2} \dots x_n^{a_n}$
- Fixed proportions
 f(x₁, x₂,...,x_n) = Min {a₁ x₁, a₂ x₂,...,a_n x_n}
 Perfect complements
- Perfect Substitutes arises when the components enter additively

Marginal Product

• Marginal product of capital is $\frac{\partial f}{\partial K}(K, L)$

• Will sometimes denote
$$f_K = f_1 = \frac{\partial f}{\partial K}(K,L)$$

- Some inputs more readily changed than others
- Suppose *L* changed in short-run, *K* in long-run

Complements and Substitutes

 Increasing amount of a complement increases productivity of another input:

$$\frac{\partial^2 f}{\partial K \partial L} > 0$$

Substitutes

$$\frac{\partial^2 f}{\partial K \partial L} < 0$$

Short Run Profit Maximization

$$\pi = pF(K,L) - rK - wL.$$

$$0 = \frac{\partial \pi}{\partial L} = p \frac{\partial F}{\partial L}(K,L^*) - w. \quad \bullet \text{ FOC}$$

$$0 \ge \frac{\partial^2 \pi}{(\partial L)^2} = p \frac{\partial^2 F}{(\partial L)^2}(K,L^*). \quad \bullet \text{ SOC}$$

Aside: Revealed Preference

- Revealed preference is a powerful technique to prove comparative statics
- Works without assumptions about continuity or differentiability
- Suppose w1 < w2 are two wage levels
- The entrepreneur chooses *L*1 when the wage is *w*1 and *L*2 when the wage is *w*2

Revealed Preference Proof

 $\begin{array}{l} \mbox{Prefer } L_1 \mbox{ to } L_2 \mbox{ when wage = } w_1 \\ pf(K,L_1) - rK - w_1L_1 \geq pf(K,L_2) - rK - w_1L_2 \\ \mbox{Prefer } L_2 \mbox{ to } L_1 \mbox{ when wage = } w_2 \\ pf(K,L_2) - rK - w_2L_2 \geq pf(K,L_1) - rK - w_2L_1. \\ \mbox{Sum these two} \\ pf(K,L_1) - rK - w_1L_1 + pf(K,L_2) - rK - w_2L_2 \geq \\ pf(K,L_1) - rK - w_2L_1 + pf(K,L_2) - rK - w_1L_2 \end{array}$

Revealed Preference, Cont'd

Cancel terms to obtain

$$-w_1L_1 - w_2L_2 \ge -w_2L_1 - w_1L_2$$

or

 $(w_1 - w_2)(L_2 - L_1) \ge 0.$

• Revealed preference shows that profit maximization implies *L* falls as *w* rises.

Comparative Statics

• What happens to L as K rises?

$$L^{*'}(K) = \frac{-\frac{\partial^2 F}{\partial K \partial L}(K, L^*(K))}{\frac{\partial^2 F}{(\partial L)^2}(K, L^*(K))}.$$

• Thus, *L* rises if *L* and *K* are complements, and falls if substitutes

Applications

- Computers use has reduced demand for secretarial services (substitutes)
- Increased technology generally has increased demand for high-skill workers (complements)
- Capital often substitutes for simple labor (tractors, water pipes) and complements skilled labor (operating machines)

Shadow Value

- Constraints can be translated into prices
- Marginal value of relaxing a constraint is known as *shadow value*
- Marginal cost of fixed capital

$$\frac{d\pi(K,L^{*}(K))}{dK} = \frac{\partial\pi(K,L^{*})}{\partial K} = p\frac{\partial F}{\partial K}(K,L^{*}) - r$$

• May be negative if too much capital

Cost Minimization

- Profit maximization requires minimizing cost
- Cost minimization for fixed output

c(y) = Min wL + rK

subject to f(K,L) = y

Cost Minimization, Continued

- Profit maximization:
- max py (wL + rK) s.t. f(K,L) = y
- For given *y*, this is equivalent to minimizing cost.
- Cost minimization equation:

$$-\frac{\frac{\partial f}}{\partial L}}{\frac{\partial f}}_{K} = \frac{dK}{dL}\Big|_{f(K,L)=y} = -\frac{w}{r}$$

Short-run Costs

- Short-run total cost

 L varies, K does not
- Short-run marginal cost – Derivative of cost with respect to output
- Short-run average cost

 average over output
 infinite at zero, due to fixed costs
- Short-run average variable cost
 average over output, omits fixed costs

Long-run costs

- Long-run average cost

 increasing if diseconomy of scale
 decreasing if economy of scale
- Scale economy if, for $\lambda > 1$,

 $f(\lambda x_1, \lambda x_2, \dots, \lambda x_n) > \lambda f(x_1, x_2, \dots, x_n)$

$$AVC(\lambda) = \frac{w_1 \lambda x_1 + w_2 \lambda x_2 + \dots + w_n \lambda x_n}{f(\lambda x_1, \lambda x_2, \dots, \lambda x_n)}$$
$$= \frac{\lambda f(x_1, x_2, \dots, x_n)}{f(\lambda x_1, \lambda x_2, \dots, \lambda x_n)} AVC(1)$$

Aside: Distribution of Profits
with Constant Returns to Scale
$$x_1 \frac{\partial f}{\partial x_1} + x_2 \frac{\partial f}{\partial x_2} + \dots x_n \frac{\partial f}{\partial x_n} = \frac{d}{d\lambda} f(\lambda x_1, \lambda x_2, \dots, \lambda x_n) \Big|_{\lambda \to 1} =$$
$$= \lim_{\lambda \to 1} \frac{f(\lambda x_1, \lambda x_2, \dots, \lambda x_n) - f(x_1, x_2, \dots, x_n)}{\lambda - 1} = f(x_1, x_2, \dots, x_n)$$
• Thus, paying inputs their marginal product uses up the output exactly under constant

- Thus, paying inputs their marginal product uses up the output exactly under constant returns to scale.
- Permits efficient decentralization of firm using prices

Distribution of Profits with Increasing Returns to Scale $x_1 \frac{\partial f}{\partial x_1} + x_2 \frac{\partial f}{\partial x_2} + \dots x_n \frac{\partial f}{\partial x_n} = \frac{d}{d\lambda} f(\lambda x_1, \lambda x_2, \dots, \lambda x_n) \Big|_{\lambda \to 1} =$

$$= \lim_{\lambda \to 1} \frac{f(\lambda x_1, \lambda x_2, \dots, \lambda x_n) - f(x_1, x_2, \dots, x_n)}{\lambda - 1} \ge f(x_1, x_2, \dots, x_n)$$

- Paying inputs their marginal product uses is not generally feasible
- · Requires centralization of operations

Shut down

- Firm shuts down when price < average cost
- Firm shuts down in short run when price < short run average cost = min average variable cost
- Firm exits in long run when price < long run average cost = min average total cost

External Economy of Scale

- The size of the industry may affect individual firm costs
 - economy of scale in input supplybidding up price of scarce input
- External economy of scale means LRATC is decreasing in

Markets

- University Education
- Housing
- Electric cars
- Energy
- Portable music players