
Technical Supplement on Milgrom-Weber Auction Theory

Complementarity

Let y ,  x y ,  x ∨∧  refer to the component-wise minima (x meet y) and maxima (x join
y), respectively.

A function f:Rn→R is supermodular if ).y  ( f + ) x ( f  )y     x ( f + )y     x ( f ≥∧∨

Remark: If f is twice-differentiable, then supermodularity reduces to:
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This, in turn, is equivalent to "increasing differences."  That is, for xi>yi,

) x _ ,  ,x  ,y  ,x _ ,  ,x ( f - ) x _ ,  ,x  ,x  ,x _ ,  ,x ( f n1+ii1-i1n1+ii1-i1  is nondecreasing in xj

for j≠i.

If f is a payoff function, the variables of f are said to be complementary.

Affiliation

If the function log f is supermodular, f is said to be log supermodular [log-spm].  If f is
a density, then the random variables with density f are said to be affiliated.  If there are
two of them, f is said to have the monotone likelihood ratio property (MLRP).

(i) Affiliation is equivalent to the statement that E[α(X)|ai ≤ Xi ≤ bi] is nondecreasing in
ai, bi for all nondecreasing functions α.

Proof: Consider _(y)=E[α(x,Y)|Y=y,a≤x≤b].  Below, expectations refer to conditioning
on Y=y, a≤x≤b.
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If the MLRP is satisfied, this is nonnegative.  Conversely, let α be increasing in x and



constant in y.  Then _ is nondecreasing for all y, a, and b if and only if the MLRP is
satisfied.

(ii) Nondecreasing functions of affiliated r.v.'s are affiliated (see Milgrom-Weber).

Let x, y have density f(x,y), and denote the density of y given x by fY(y|x), with cdf
FY(y|x).

(iii) FY(y|x) is nonincreasing in x (First Order Stochastic Dominance).

The characteristic function of a set, 1A, is the function which is 1 if x∈A and 0
otherwise.  Note ]. 1 [ E =]  x  XPr[ }x    X{ii ii ≥≥   It follows that Pr[Xi≥xi | Xj=xj] is

nondecreasing in xj.

(iv) f is log-spm if and only if fY is log-spm.

Proof: 
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(v) Independently distributed random variables are affiliated.

(vi) If f(y|x) is log-spm, F(y|x) is log-spm

Proof: 
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(vii) if f,g are log-spm, f.g is log-spm.  Proof is log fg = log f + log g.

Auction Environment

Bidder i privately receives a signal that is the realization of the r.v. Xi; the vector
(X1,…,Xn,S) are affiliated and the Xi's are symmetrically distributed.  The payoff to



bidder i is u(Xi,X-i,S).  u is assumed nondecreasing in all arguments.  We fix attention
on bidder 1 and let Y = max {X2,…,Xn).  Y is affiliated with X1.  Let fY(Y|x) be the
density of Y given X1=x, with distribution function FY.  Let v(x,y)=E[u|x1=x,Y=y].  Since
u is nondecreasing, so is v.



Second Price Auction

In a second price auction, the high bidder obtains the object and pays the second
highest bid.

A symmetric equilibrium bidding function is a function B2 such that, given all other
bidders bid according to B2, the remaining bidder maximizes expected profit by bidding
B2(x) given signal x.  Consider bidder 1 with signal x who instead bids B2(z).  This
bidder earns
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In order for B2 to be an equilibrium, π must be maximized at z=x, which implies

B2(x) = v(x,x).

It is straightforward to show that B2 is indeed an equilibrium, and is the only symmetric
equilibrium.

If a reserve price (minimum acceptable bid) r is imposed, bidders with signals below xr,
where E[v(xr,Y)|Y≤xr]=r, do not submit bids; otherwise the equilibrium is unperturbed. 
Note however, that the minimum submitted bid, B2(xr) > r!

Suppose the seller knows Si.  Should the seller tell the bidders S?  Let

w(x,y,s) = E[u | X1=x, Y=y, Si=s].

  v(y,y) = y] = Y = X  |  )SY,,XE[w( 1i1

  = y] = Y = X  |  )SY,E[w(Y, 1i

  ≤ y]. = Y  X  |  )SY,E[w(Y, 1i ≥

The seller's revenue with no disclosure, RN, is

RN = Y]  X  |  Y)E[v(Y, 1 ≥

     ≤ Y] > x  |Y]    X  |  )SY,E[E[w(Y, 11i ≥

     = ,R =Y]  > X  |  )SY,E[w(Y, I1i the revenue with disclosure of Si.



First Price Auction

In a first price auction, the high bidder obtains the object and pays her bid.

Suppose B1 is a symmetric equilibrium.  The profits to bidder 1, with signal x, who bids
B1(z), are:
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Maximizing with respect to z, and setting z=x, yields the first order differential equation
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Suppose that the reserve price is zero.  Then the differential equation has solution
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If the reserve price r > 0, the screening level is xr and B1 satisfies B1(xr)=r.

Integrating B1(x) by parts, we have:
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Conditional on winning with a signal of x (probability FY(x|x)), a bidder in a second
price auction pays
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Since v is nondecreasing, the expected payment by a winning bidder with signal x is
higher in a second price auction than in a first price auction.


