Technical Supplement on Milgrom-Weber Auction Theory

Complementarity

Let $x \wedge y$, $x \vee y$, refer to the component-wise minima (*x meet y*) and maxima (*x join*) *y*), respectively.

A function $f: \mathbb{R}^n \to \mathbb{R}$ is supermodular if $f(x \lor y) + f(x \land y) \geq f(x) + f(y)$.

Remark: If *f* is twice-differentiable, then supermodularity reduces to:

$$
i \neq j
$$
 implies $\frac{\partial^2 f}{\partial x_i \partial x_j} \ge 0$.

This, in turn, is equivalent to "increasing differences." That is, for $x_i > y_i$,

 $f(x_1, ..., x_{i-1}, x_i, x_{i+1}, ..., x_n)$ - $f(x_1, ..., x_{i-1}, y_i, x_{i+1}, ..., x_n)$ is nondecreasing in x_i for $j\neq i$.

If *f* is a payoff function, the variables of *f* are said to be complementary.

Affiliation

If the function $\log f$ is supermodular, *f* is said to be log supermodular [log-spm]. If *f* is a density, then the random variables with density *f* are said to be *affiliated*. If there are two of them, *f* is said to have the *monotone likelihood ratio property* (MLRP).

(i) Affiliation is equivalent to the statement that $E[\alpha(\mathbf{X})|a_i \leq X_i \leq b_i]$ is nondecreasing in a_i , b_i for all nondecreasing functions α .

Proof: Consider $(y)=E[\alpha(x, Y)|Y=y, a\leq x\leq b]$. Below, expectations refer to conditioning on *Y*=*y*, *a*≤*x*≤*b*.

$$
\mathbf{j}'(y) = E\left[\frac{\partial \mathbf{a}}{\partial y}\right] + \int \mathbf{a}(x, y) \left[\frac{f_y(x/y)}{\int_a^b f(z/y) dz} - \frac{f(x/y) \int_a^b f_y(z/y) dz}{\int_a^b f(z/y) dz}\right] dx
$$

\n
$$
= E\left[\frac{\partial \mathbf{a}}{\partial y}\right] + E\left[\mathbf{a}(x, y) \frac{f_y(x/y)}{f(x/y)}\right] - E\left[\mathbf{a}(x, y)\right]E\left[\frac{f_y}{f}\right]
$$

\n
$$
= E\left[\frac{\partial \mathbf{a}}{\partial y}\right] + cov(\mathbf{a}, \frac{f_y}{f}).1
$$

If the MLRP is satisfied, this is nonnegative. Conversely, let α be increasing in *x* and

constant in *y*. Then _ is nondecreasing for all *y*, *a*, and *b* if and only if the MLRP is satisfied.

(ii) Nondecreasing functions of affiliated r.v.'s are affiliated (see Milgrom-Weber).

Let *x*, *y* have density $f(x, y)$, and denote the density of *y* given *x* by $f_Y(y|x)$, with cdf $F_Y(y|x)$.

(iii) $F_Y(y|x)$ is nonincreasing in *x* (First Order Stochastic Dominance).

The characteristic function of a set, 1_A , is the function which is 1 if $x \in A$ and 0 otherwise. Note $Pr[X_i \ge x_i] = E[I_{X_i \ge x_i}]$. It follows that $Pr[X_i \ge x_i | X_j = x_j]$ is nondecreasing in *xj*.

(iv) *f* is log-spm if and only if *fY* is log-spm.

Proof:
$$
\frac{\partial^2}{\partial x \partial y} \log f_Y(y/x) = \frac{\partial^2}{\partial x \partial y} \log \left(\frac{f(x, y)}{\int f(x, z) dz} \right)
$$

 $\frac{\partial^2}{\partial x \partial y} \log f(x, y) - \frac{\partial^2}{\partial x \partial y} \log \left(\int f(x, z) dz \right) = \frac{\partial^2}{\partial x \partial y} \log f(x, y).$

(v) Independently distributed random variables are affiliated.

(vi) If $f(y|x)$ is log-spm, $F(y|x)$ is log-spm

Proof:
$$
\frac{\partial}{\partial x} \frac{f(y/x)}{F(y/x)} = \frac{f_2(y/x)}{F(y/x)} \cdot \frac{f(y/x) F_2(y/x)}{F(y/x)^2}
$$

$$
= \frac{f(y/x)}{F(y/x)^2} \left[\frac{f_2(y/x)}{f(y/x)} F(y/x) - F_2(y/x) \right]
$$

$$
= \frac{f(y/x)}{F(y/x)^2} \left[\int_0^y \left(\frac{f_2(y/x)}{f(y/x)} - \frac{f_2(z/x)}{f(z/x)} \right) f(z/x) dz \right] \ge 0.
$$

(vii) if *f*, *g* are log-spm, *f g* is log-spm. Proof is $\log f g = \log f + \log g$.

Auction Environment

Bidder *i* privately receives a signal that is the realization of the r.v. X_i ; the vector (X_1, \ldots, X_n, S) are affiliated and the X_i 's are symmetrically distributed. The payoff to bidder *i* is $u(X_i, X_i, S)$. *u* is assumed nondecreasing in all arguments. We fix attention on bidder 1 and let $Y = \max \{X_2, \ldots, X_n\}$. *Y* is affiliated with X_1 . Let $f_Y(Y|x)$ be the density of *Y* given *X*₁=*x*, with distribution function F_Y . Let $v(x,y) = E[u|x_1=x, Y=y]$. Since *u* is nondecreasing, so is *v*.

Second Price Auction

In a second price auction, the high bidder obtains the object and pays the second highest bid.

A symmetric equilibrium bidding function is a function B_2 such that, given all other bidders bid according to *B*2, the remaining bidder maximizes expected profit by bidding $B_2(x)$ given signal *x*. Consider bidder 1 with signal *x* who instead bids $B_2(z)$. This bidder earns

$$
\mathbf{p} = \int_{0}^{z} (v(x, y) - B_2(y)) f_Y(y/x) dy.
$$

In order for B_2 to be an equilibrium, π must be maximized at $z=x$, which implies

$$
B_2(x) = v(x,x).
$$

It is straightforward to show that B_2 is indeed an equilibrium, and is the only symmetric equilibrium.

If a reserve price (minimum acceptable bid) r is imposed, bidders with signals below x_r , where $E[v(x_i, Y)|Y \le x_r] = r$, do not submit bids; otherwise the equilibrium is unperturbed. Note however, that the minimum submitted bid, $B_2(x_r) > r!$

Suppose the seller knows *Si*. Should the seller tell the bidders *S*? Let

$$
w(x, y, s) = E[u | X_1=x, Y=y, S_i=s].
$$

$$
v(y, y) = E[w(X_1, Y, S_i) | X_1 = Y = y]
$$

$$
= E[w(Y, Y, S_i) | X_1 = Y = y]
$$

$$
\le E[w(Y, Y, S_i) | X_1 \ge Y = y].
$$

The seller's revenue with no disclosure, R_N , is

$$
R_N = E[v(Y, Y) | X_1 \ge Y]
$$

\n
$$
\le E[E[w(Y, Y, S_i) | X_1 \ge Y] | x_1 > Y]
$$

\n
$$
= E[w(Y, Y, S_i) | X_1 > Y] = R_I
$$
, the revenue with disclosure of S_i.

First Price Auction

In a first price auction, the high bidder obtains the object and pays her bid.

Suppose B_1 is a symmetric equilibrium. The profits to bidder 1, with signal *x*, who bids $B_1(z)$, are:

$$
\mathbf{p} = \int_{0}^{z} (\nu(x, y) - B(z)) f_{Y}(y / x) dy.
$$

Maximizing with respect to *z*, and setting $z=x$, yields the first order differential equation

$$
B_{I'}(x) = \frac{f_Y(x \mid x)}{F_Y(x \mid x)} (\nu(x, x) - B_I(x)).
$$

Suppose that the reserve price is zero. Then the differential equation has solution

$$
B_1(x) = \int_0^x e^{-\int\limits_y^x \frac{f_Y(z)z}{F_Y(z)z}} dz \frac{f_Y(y/y)}{F_Y(y/y)} \ \nu(y, y) \ dy.
$$

If the reserve price $r > 0$, the screening level is x_r and B_1 satisfies $B_1(x_r) = r$.

Integrating $B_1(x)$ by parts, we have:

$$
B_1(x) = v(x, x) - \int_0^x e^{-\int\limits_y^x \frac{f_y(z \mid z)}{F_Y(z \mid z)} dz} \left[\frac{d}{dy} v(y, y) \right] dy.
$$

Conditional on winning with a signal of *x* (probability $F_Y(*x/x*)$), a bidder in a second price auction pays

$$
EB_2 = \int_0^x v(y, y) \frac{f_Y(y/x)}{F_Y(x/x)} dy = v(x, x) - \int_0^x \frac{F_Y(y/x)}{F_Y(x/x)} \left[\frac{d}{dy} v(y, y) \right] dy.
$$

Note that $\log F_Y(x \mid x) - \log F_Y(y \mid x) = \int_{\frac{F_Y(z \mid x)}{F_Y(z \mid x)}}^{x} dz \ge \int_{\frac{F_Y(z \mid z)}{F_Y(z \mid z)}}^{x} dz$ $F_Y(z/x)$ $\alpha z \leq y$ $\int_{\mathbf{f}}^{x} f_{\mathbf{y}}(z/x)$ $Y(Y | X)$ - log $F_Y(Y | X) = \int_{Y} \frac{f_Y(x, y)}{F_Y(z, x)} dz \ge \int_{Y} \frac{f_Y(x, y)}{F_Y(y, x)} dz$ $\log F_Y(x \mid x) - \log F_Y(y \mid x) = \int \frac{f_Y(z \mid z)}{F_Y(z \mid x)} dz \ge \int \frac{f_Y(z \mid z)}{F_Y(z \mid z)} dz$, (by(vi))

and thus,
$$
\frac{F_Y(y \mid x)}{F_Y(x \mid x)} \leq e^{-\int\limits_y^x \frac{f_Y(z \mid z)}{F_Y(z \mid z)} dz}
$$
.

Since ν is nondecreasing, the expected payment by a winning bidder with signal x is higher in a second price auction than in a first price auction.